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Abstract

In this paper, a classical film model is extended to account for unsteady-state multicomponent diffusion and reaction coupling. The
governing matrix-form partial differential equation is complemented by the initial and boundary conditions formulated as general vector
functions. An additional linearization of the reaction source term results in the formulation which allows an analytical handling of
the problem. The latter is found to be successful even with the generally set initial and boundary conditions. The solution approach
combines the superposition principle and the method of the separation of variables extended for the matrix operations. The exact analytical
matrix solution obtained is a generalization of many simpler problems and either can be employed by itself or provides suitable preset
values for relevant numerical simulations of industrial-scale reactive separation operations. © 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

The modeling and design of reactive separation equipment
is based on the theoretical description of coupled reaction
and mass transport in fluid systems. As a rule, these systems
represent multicomponent gas and/or liquid mixtures offer-
ing far more complex transport properties as compared with
simple binary mass transport [1]. Therefore, detailed models
are required for an adequate description of the interaction
between diffusional mass transfer and chemical reaction. A
very promising rate-based approach based on the multicom-
ponent two-film theory has been developed by Kenig and
Górak [2]. In contrast to the classical two-film models, the
chemical reaction kinetics and equilibrium are taken into
account directly in the differential equations describing the
film region in order to avoid unpredictable correction pa-
rameters like enhancement factors and/or efficiencies.

Real industrial-scale reactive separation units are de-
scribed by very large systems of equations including mass
and heat balances, interfacial equilibrium relations, com-
ponent and mixture property expressions, mass and heat
transfer coefficient correlations, etc. Simultaneously solving
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such large-scale systems may cause significant computa-
tional difficulties [3] which can be avoided with the help of
sequential-modular algorithms employing a separate calcu-
lation of mass transfer rates influenced by the reaction in the
film. An additional means helping to reach stable compu-
tations is the linearization of the process kinetics allowing
further application of matrix-based analytical techniques. If
the linearization is accomplished with a reasonable accu-
racy, such an approximation seems to be good enough for
getting adequate results and avoiding calculation trouble
(see [4]).

This approach has been successfully applied to the
steady-state simulation of several reactive separation pro-
cesses, such as reactive absorption of nitrous gases [5] and
reactive distillations of different chemical systems [6]. In
an air purification process for coke plant gases [7], the
detailed rate-based description has been extended to cover
dynamic process behavior for control issues and the pre-
dictive description of the column hydraulics in response
to operating condition changes. The dynamic differential
balances for the packing section and the film region lead to
a very large system of partial differential equations which
has been solved numerically after a suitable discretization.

In practice, one of the major problems of numerical simu-
lations is the estimation of a consistent set of initial guesses
for all variables, especially within the film region where the
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Nomenclature

ci molar concentration of species i, mol/m3

CCC vector consisting of ci , dimension (m − 1),
mol/m3

[D] matrix of multicomponent diffusion
coefficients, m2/s

[I] unit matrix
Ji molar diffusion flux of species i,

mol/(m2 s)
JJJ vector consisting of Ji , dimension (m − 1),

mol/(m2 s)
kfor
i reaction velocity constant of forward reaction

of reaction i, indefinite
krev
i reaction velocity constants of reverse reaction

of reaction i, indefinite
[K̃] reaction velocity matrix, dimension m, 1/s
[K] reduced reaction velocity matrix, dimension

(m − 1), 1/s
l number of reactions
m number of components
mi reaction order associated with species i
ri specific reaction rate of reaction i, mol/(m3 s)
R̃̃R̃R vector consisting of reaction rates, dimension

m, mol/(m3 s)
RRR vector consisting of reaction rates, dimension

(m − 1), mol/(m3 s)
t time, s
x film coordinate directed from the interface

into the bulk phase, m

Greek letters
δ effective thickness of the film, m
δij Kronecker-delta
νij stoichiometric coefficient associated with

species i and reaction j
ξ dimensionless film coordinate

Subscripts
∞ referred to the steady-state solution
B bulk
I interface

Superscripts
T transposed
∼ indicates dimension m if necessary to

discriminate from dimension (m − 1)

greatest concentration gradients appear. This is a difficult
step which can be, again, avoided, using an analytical solu-
tion.

In this paper, an unsteady-state multicomponent diffusion–
reaction problem in the film region is considered, with ar-
bitrary initial and boundary conditions. An exact analytical
matrix solution of this problem is suggested which can be

either applied by itself or provide suitable preset values for
a relevant numerical solution.

2. Problem formulation

In the classical film model [8,9] it is assumed that all of
the resistance to mass transfer is concentrated in a thin layer
(film) with a constant thickness adjacent to the phase in-
terface. The mass transport mechanism normally involving
diffusion and convection is divided into two separate phe-
nomena, namely, laminar, steady-state diffusion in the stag-
nant film and complete turbulent mixing in the bulk of the
phase.

The imaginary film thickness is a parameter of the film
model which needs to be estimated experimentally. Its value
is determined in such a way that it could match experimen-
tal data of real separation processes. Such data are usually
presented as the mass transfer coefficient correlations which
are available in the literature [1,10–12].

The key assumptions of the classical film model result
in the one-dimensional mass transport normal to the in-
terface and pure diffusional transport mechanism in the
imaginary film (the so-called equimolar diffusion). This
concept can be augmented to unsteady state which leads to
the film-penetration model of Toor and Marchello [13]. By
further extending this description to account for multicom-
ponent mass transfer and reaction in the film we obtain the
following continuity equation:

∂CCC

∂t
+ ∂JJJ

∂x
= RRR (1)

To express the molar flux vector JJJ via the component
concentrations, some constitutive relation is necessary [1].
As such a constitutive relation we use the well-known
Maxwell–Stefan equations [14] which can be converted to
the following (m − 1)-dimensional flux expression [15,16]:

JJJ = −[D]
∂CCC

∂x
(2)

The latter equation has the form of the generalized first
Fick’s law [1,15,16]. The mth flux can be found from the
condition
m∑
i=1

Ji = 0 (3)

which directly follows from the diffusion flux definition.
Matrix [D] which is generally a function of the mixture
composition is assumed constant along the diffusion path
according to the linearized theory of Toor [15,16] and
Stewart and Prober [17].

The generalized Fick’s law (Eq. (2)) holds also for sys-
tems which do not obey the equimolar mass transfer condi-
tion. Such systems appear, for example, if inert components
are present. The direct expressions for the elements of the
diffusion matrix [D] can be found, for example, in [1].
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2.1. Linearization of the reaction term

Usually the kinetics of chemical reactions is not of the
first order. In a multicomponent mixture, which appears in
homogeneous reactive separation, the reaction kinetics is
normally described by the mass action law [18]:

ri = kfor
i

m∏
j=1

c
mj

j − krev
i

m∏
j=1

c
mj

j (4)

where ri denotes the specific rate of ith reaction which is
related to the vector RRR as follows [19,20]

R̃̃R̃R(CCC(x)) =



ν11 ν12 · · · ν1l

ν21 ν22
...

...
. . .

νm1 · · · · · · νml






r1(CCC(x))

r2(CCC(x))
...

rl(CCC(x))


 (5)

Eq. (5) permits a consideration of any arbitrary number of
reactions. Reducing Eq. (5) to a (m − 1)-dimensional form
and combining with Eqs. (1) and (2), one obtains a coupled
non-linear matrix equation which has to be solved numeri-
cally [4]. However, when applied to the modeling and design
of industrial-scale reactive separation units, numerical so-
lutions may still cause convergence and stability problems.
An alternative approach that allows an analytical treatment
is based on a linear approximation of the reaction term in
Eq. (1):

R̃̃R̃R ∼= −[K̃]C̃̃C̃C (6)

Such an approximation was first put forward by Wei and
Prater [21] and later extensively investigated by many au-
thors (see, for example, [4,19,22]). Eq. (6) was found to be
well suited for kinetic expressions of a reasonably general
form and is now widely exploited in various chemical and
reactor engineering areas, e.g. complex reaction schemes,
continuous mixtures, etc. (see [23]).

To linearize Eq. (4), the latter is first subdivided into the
forward and reverse reaction expressions and then each part
is linearized by the least square method. Delanceyy [19]
suggested as an approach for linearization the following
criterion

Min
kj

∫ c1I

c1B

∫ c2I

c2B

. . .

∫ cmI

cmB

×


kfor/rev

m∏
i=1

c
mi

i −
m∑
j 
=1
mj 
=0

kj cj




2

dc1 dc2 · · · dcm (7)

By this criterion the constants kj , j = 1, 2, . . . , m are de-
termined for each reaction i. To get the minimum of the
function in Eq. (7), the integrands are differentiated in re-
spect to all constants kj and afterwards they are integrated
over the whole concentration simplex. Differentiation gives

∫ c1I

c1B

∫ c2I

c2B

. . .

∫ cmI

cmB

[
kfor/rev

m∏
i=1

c
(mi+δαi )
i

]
dc1 dc2 · · · dcm

−
∫ c1I

c1B

∫ c2I

c2B

· · ·
∫ cmI

cmB




m∑
j=1
mj 
=0

kj cj cα


 dc1 dc2 · · · dcm = 0

(8)

for α = 1, 2, . . . , m and mα 
= 0.
The first integral contains the product term corresponding

to the real reaction kinetics whereas the second one contains
the sum term relevant to the linearized reaction kinetics.
The unknown constants thus appear in the second term only.
Integration of the first term of Eq. (8) yields

∫ c1I

c1B

∫ c2I

c2B

· · ·
∫ cmI

cmB

[
m∏
i=1

c
(m+δαi )
i

]
dc1 dc2 · · · dcm

= mα + 1

mα + 2

(
c
mα+2
αI − c

mα+2
αB

c
mα+1
αI − c

mα+1
αB

)

×
m∏
j=1
mj 
=0

1

mj + 1
(c

mj+1
j I − c

mj+1
jB ) (9)

for α = 1, 2, . . . , m and mα 
= 0, and the integration of the
second term∫ c1I

c1B

∫ c2I

c2B

· · ·
∫ cmI

cmB

m∑
j=1
mj 
=0

kj cj cα dc1 dc2 · · · dcm

=
m∏
i=1
mi 
=0

(ciI − ciB) ×
m∑
j=1
mj 
=0

1

4 − δαj

× [kj (cαI + cαB)(cj I + cjB) − δαj kj cjBcj I] (10)

Inserting Eqs. (9) and (10) into Eq. (8) results in a standard
system of linear algebraic equations which can be written as

p̃̃p̃p = [Q̃]k̃̃k̃k (11)

By solving the system (11) the linearization constants kj ,
j = 1, 2, . . . , m, can be obtained for each reaction i.

The linearization method of DeLancey [19] was cho-
sen because it takes into account the whole concentration
simplex. The vectors k̃̃k̃ki , i = 1, 2, . . . , l, contain the lin-
earization constants for all l reactions, and they are used to
obtain the reaction velocity matrix [K̃]. Multiplying with
the values of the stoichiometric coefficients yields

[K̃] = −



ν11 ν12 · · · ν1l

ν21 ν22
...

...
. . .

νm1 · · · · · · νml







k̃̃k̃k
T
1

k̃̃k̃k
T
2

...

k̃̃k̃k
T
l




(12)
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2.2. Governing equations

Kenig and Kholpanov [24] considered the mechanism of
transformation of the reaction velocity matrix [K̃] to the
dimension (m − 1) which is consistent with Eqs. (1) and
(2). The transformation is performed using the so-called
chemical equilibrium composition vector [22]. Kenig and
Kholpanov [24] suggested that two types of reacting mix-
tures should be considered differently. The first type corre-
sponds to mixtures in which all components are chemically
active. In this case, as shown by Wei and Prater [21] and
Toor [22], there exists a unique chemical equilibrium com-
position vector. The second type corresponds to mixtures
where at least one chemically passive component is present.
Here, the chemical equilibrium composition vector is not
unique since there is an infinity of chemical equilibrium
compositions. For distinct types of mixtures the reduction
transformation should be somewhat different [24].

Inserting Eq. (2) into Eq. (1) and using linearization of
the reaction term RRR as described above we obtain

∂CCC

∂t
= [D] · 1

δ2
· ∂

2CCC

∂ξ2
− [K]CCC (13)

where the dimensionless film coordinate ξ is defined as

ξ = x

δ
(14)

Eq. (13) represents a matrix-form generalization of a similar
scalar equation which describes first-order reacting systems
(see, e.g. [18,25,26]). According to the model assumptions,
all physical properties, like total molar density, as well as the
diffusion matrix, are evaluated at a properly chosen average
concentration [15–17].

To complete the problem, we have to specify the initial
condition and the boundary conditions at both sides of the
film. In earlier works [27,28] such conditions have been re-
lated to the film-penetration theory [13]. The latter employs
constant values of the initial and boundary conditions, and
in addition, sets the initial concentrations equal to the bulk
concentrations. In this work, we suggest a different and quite
general definition:

t = 0 : CCC = CCC0(ξ) (15)

ξ = 0 : CCC = CCCI(t) (16)

ξ = 1 : CCC = CCCδ(t) (17)

Here,CCC0(ξ ) is some general function of ξ , whereasCCCI(t) and
CCCδ(t) are some general functions of time. The concentration
vector CCCI(t) corresponds to the interfacial mixture composi-
tion andCCCδ(t) to the bulk composition. Thus, all the govern-
ing equations are given here in a matrix form, and the initial
and boundary conditions (15)–(17) are defined in a general
way which yields a solution applicable over a wide range.
The solution of the problem (13), (15)–(17) allows the com-
ponent concentration profiles to be obtained as functions of
the dimensionless film coordinate ξ and time.

3. Solution

Because of the general form of the initial and boundary
conditions (15)–(17) it is impossible to solve the problem
(13), (15)–(17) directly. Therefore, an exact solution will be
derived in four steps using the superposition principle.

3.1. Step 1

Let us introduce the following vector function [29]

FFF(ξ, t) = CCCI(t) + ξ [CCCδ(t) −CCCI(t)] (18)

and write down

CCC(ξ, t) = UUU(ξ, t) +FFF(ξ, t) (19)

Inserting Eqs. (18) and (19) into the initial problem,
Eqs. (13), (15)–(17), we obtain

∂UUU

∂t
= [D] · 1

δ2
· ∂

2UUU

∂ξ2
− [K]UUU + fff (ξ, t) (20)

where

fff (ξ, t) = −[K]FFF(ξ, t) − ∂FFF(ξ, t)

∂t
(21)

and

t = 0 : UUU = CCC0(ξ) −FFF(ξ, 0) = UUU0(ξ) (22)

ξ = 0 : UUU = CCCI(t) −CCCI(t) = 0 (23)

ξ = 1 : UUU = CCCδ(t) −CCCδ(t) = 0 (24)

The problem (20)–(24) is homogeneous in respect to the
boundary conditions.

3.2. Step 2

Let us further sub-divide the problem (20)–(24) into the
following two simpler problems:

UUU(ξ, t) = AAA(ξ, t) +BBB(ξ, t) (25)

with “A-problem”

∂AAA

∂t
= [D] · 1

δ2
· δ

2AAA

∂ξ2
− [K]AAA (26)

t = 0 : AAA = UUU0(ξ) (27)

ξ = 0 : AAA = 0 (28)

ξ = 1 : AAA = 0 (29)

and “B-problem”

∂BBB

∂t
= [D] · 1

δ2
· δ

2BBB

∂ξ2
− [K]BBB + fff (ξ, t) (30)

t = 0 : BBB = 0 (31)
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ξ = 0 : BBB = 0 (32)

ξ = 1 : BBB = 0 (33)

“A-problem”, Eqs. (26)–(29), is inhomogeneous in regard to
the initial condition, while in “B-problem”, Eqs. (30)–(33),
the partial differential Eq. (30) itself is inhomogeneous. Pro-
vided that both these problems are solved, the vector func-
tion UUU (ξ , t) is known from Eq. (25), and hence CCC(ξ , t) can
be determined via Eqs. (18) and (19).

3.3. Step 3

3.3.1. Solution of “A-problem”
A matrix generalization of the method of separation of

variables was employed by Toor [22] and DeLancey & Chi-
ang [30] to solve Eq. (13) with symmetric boundary condi-
tions. Kenig et al. [31] solved a similar problem, where the
boundary conditions are non-symmetric (the boundary con-
ditions of the first and second order). Here, we employ this
approach for solving “A-problem”, Eqs. (26)–(29), bearing
in mind the difference in the formulation of the boundary
conditions (28),(29).

An important property which makes such a matrix gen-
eralization possible is that the characteristic matrices of the
correspondent matrix-form eigenvalue problem are rather
simple, namely, they represent a product of a correspondent
scalar eigenvalue and a unit matrix [31]. Therefore, the fol-
lowing straightforward solution of the problem (26)–(29) is
obtained:

AAA(ξ, t) =
∞∑
n=1

e−[Qn]t sin(πnξ) · aaan (34)

where

aaan = 2
∫ 1

0
UUU0(η) sin(πnη) dη (35)

and

[Qn] =
(πn
δ

)2
[D] + [K] (36)

It can be readily proved that the solution (34)–(36) indeed
satisfies the system (26)–(29). This solution represents a
direct matrix generalization of the relevant result for bi-
nary systems, i.e. for the scalar analogue of the diffusion
Eq. (26) with the scalar boundary conditions corresponding
to Eqs. (27)–(29) [29].

3.4. Step 4

3.4.1. Solution of “B-problem”
Following the method of separation of variables let us

seek the solution in the following form:

BBB(ξ, t) =
∞∑
n=1

[Tn(t)] sin(πnξ) · bbb (37)

where bbb is an arbitrary constant vector of (m − 1)th order.
In this case the boundary conditions (32),(33) are satisfied
necessarily.

Each component of the vector function fff can be repre-
sented as a Fourier sine series [29]:

fi(ξ, t) =
∞∑
n=1

fn,i(t) sin(πnξ) (38)

where

fn,i = 2
∫ 1

0
fi(η, t) sin(πnη) dη (39)

Inserting Eq. (37) into Eq. (30) yields

∞∑
n=1

{
d[Tn(t)]

dt
bbb + 1

δ2
[D][Tn(t)]bbb × π2n2

+[K][Tn(t)]bbb − diag[αn]bbb

}
sin(πnξ) = 0 (40)

where a diagonal matrix diag[αn] is defined as follows

diag[αn] : (diag[αn])ij =
(
fn,i

bi

)
δij (41)

From Eqs. (36) and (41) we obtain(
d[Tn(t)]

dt
+ [Qn][Tn(t)] − diag[α]

)
· bbb = 0 (42)

From the initial condition (31) it follows

BBB(ξ, 0) = 0 =
∞∑
n=1

[Tn(0)] sin(πnξ) · bbb (43)

or

[Tn(0)] = 0, for ∀n (44)

Now, solving the ordinary differential matrix-form Eq. (42)
with the initial condition (44) brings

[Tn(t)]bbb =
[∫ t

0
e−[Qn](t−τ) · diag[α] dτ

]
bbb (45)

Inserting Eq. (45) into Eq. (37) yields the solution of
“B-problem”

BBB(ξ, t) =
∞∑
n=1

[∫ t

0
e−[Qn](t−τ) · fn(τ) dτ

]
sin(πnξ) (46)

It is easy to prove that the solution (46) satisfies the system
(30)–(33).

Now, combining all the above steps, the solution of the
initial problem, Eqs. (13), (15)–(17) is obtained:

CCC(ξ, t)=
∞∑
n=1

e−[Qn]·t sin(πnξ)aaan +
∞∑
n=1[∫ t

0
e−[Qn](t−τ) · fff n(τ) dτ

]
sin(πnξ)

+FFF(ξ, t) (47)
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Fig. 1. Local concentration distributions through the film thickness at different instants of time: (1) t = 1 s; (2) t = 10 s; (3) t = 30 s. Solid lines, first
component; dash lines, second component.

where FFF (ξ , t) is defined by Eq. (18), fff n(τ ) is defined by
Eqs. (21) and (39), aaan is defined by Eqs. (22) and (35), and
[Qn] is defined by Eq. (36).

Eq. (47) provides the concentration fields at any arbitrary
instant of time and thus can be used to calculate average
component concentration values and the molar fluxes.

4. Particular case: steady-state solution at constant
boundary compositions

The suggested model is quite general and hence, there
is a number of simpler problems which are covered by
the solution (47). Let us just consider the case where the
film boundary compositions are maintained at some constant
values CCCI∞ and CCCδ∞.

Then, the functions FFF (ξ , t) and fff (ξ , t) do not depend on
time any longer:

FFF(ξ, t) = FFF∞(ξ) = CCCI∞ + ξ(CCCδ∞ −CCCI∞) (48)

fff (ξ, t) = fff∞(ξ) = −[K]FFF∞(ξ) (49)

and the solution (47) simplifies to

CCC(ξ, t)=
∞∑
n=1

e−[Qn]t sin(πnξ)aaan +
∞∑
n=1

[Qn]−1

× {[I ] − e−[Qn]t } sin(πnξ)fff n∞ +FFF∞(ξ) (50)

For the film-penetration model, vector of the initial concen-
trations is equal to CCCδ∞ [13]. In this case, Eq. (50) trans-
forms to

CCC(ξ, t)=CCCI∞ + ξ(CCCδ∞ −CCCI∞) + 2
∞∑
n=1

{e−[Qn]t

+[Qn]−1([I ] − e−[Qn]t )[K](−1)n}

× sin (πnξ)

πn
·CCCδ∞ − 2

∞∑
n=1

{e−[Qn]t

+[Qn]−1([I ] − e−[Qn]t )[K]} sin (πnξ)

πn
·CCCI∞

(51)

The steady-state concentration profiles in the film can be
obtained by setting t in Eq. (50) to infinity:

CCC∞(ξ)= 2

π

∞∑
n=1

[Qn]−1[K]
1

n

×{cos (πn)CCCδ∞ −CCCI∞} sin(πnξ)+FFF∞(ξ) (52)

The first term in Eq. (52) reflects the influence of the re-
action. If we further simplify the problem considering the
non-reacting case and set [K] to zero, Eq. (52) reduces to

CCC∞(ξ) = FFF∞(ξ) = CCCI∞ + ξ(CCCδ∞ −CCCI∞) (53)

which is a well-known linear expression for pure diffusional
multicomponent mass transfer in the film region [1].
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Fig. 2. (a) Local concentration development in time for the first component. (b) Local concentration development in time for the second component.
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Fig. 3. Local concentration distributions through the film thickness at different instants of time for the first component: (1) pure mass transfer; (2) mass
transfer with reaction by Eq. (54). Solid lines, t = 1 s; dash lines, t = 10 s; lines with stones, t = 30 s.

5. Numerical examples

Let us consider some examples which illustrate the op-
portunities of the proposed analytical solution. We select a
typical set of parameters for reactive absorption of two gases
by inert non-volatile liquid solvent. The gases (components
1 and 2) undergo a reversible chemical reaction which may
be approximated by the linearized kinetic expression (s−1)
with the reaction velocity matrix

[K] =
[

0.1 −0.6
−0.1 0.6

]
(54)

Other parameters entering into Eq. (4) are

[D] =
[

4.81 0.43
0.84 5.21

]
× 10−5, δ = 0.06

[0] is expressed in cm2/s; δ in cm. These values are typical
for reactive absorption, reactive distillation and some other
similar operations [24].

For the first example, the initial and boundary concentra-
tion distributions (mol/cm3) assume constant values

t = 0 : CCC = CCC0(ξ) =
(

0.008
0.008

)

ξ = 0 : CCC = CCCI(t) =
(

0.0025
0.0015

)

ξ = 1 : CCC = CCC0(t) =
(

0.0055
0.0045

)

Fig. 1 demonstrates the local concentration profiles of both
transferred components through the film for three different
instants of time. Such profiles are important for the under-
standing of the process behavior in the interfacial region and
provide the component fluxes values.

Fig. 2 shows the process development with time. The
concentration profiles are based on the data presented in
Fig. 1. It can be clearly seen that both components arrive at
the steady state after about 20 s.

Fig. 3 gives an impression how reaction influences the
mass transport in the film. The concentration profiles of the
first component are shown for the case of pure mass transfer
([K] = 0) and for the case of mass transfer with simultane-
ous reactions ([K] defined by Eq. (54)). A noticeable shift
and a bend of the local profiles is an obvious effect of the
reaction kinetics. It is worthy of note that as the steady state
is achieved, the profile for the case of the pure mass transfer
correctly reduces to a straight line.

Finally, it appears interesting to study the influence of
the initial conditions on the development of the concentra-
tion profiles with time. Therefore, we simulate three differ-
ent processes using different distributions CCC0(ξ ) (Eq. (22)),
namely a constant function, a linear function and a parabolic
function. In Fig. 4 it is clearly seen that the influence of the
initial condition is pronounced at the beginning of the pro-
cess (short times), however, it falls off gradually with time.
As a result, all three processes arrive at the same steady state
which is determined by the physicochemical parameters of
Eq. (4) and by the boundary conditions (23)–(24).
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Fig. 4. Influence of the initial condition on local concentration distributions for the first component: (1) constant value; (2) linear function; (3) parabolic
function. Solid lines, t = 0; dash lines, t = 10 s; lines with stones, t = 30 s.

In all examples, the reaction has been defined in such a
way that the first component is produced whereas the second
component vanishes. A complex interplay of the reaction,
diffusional interactions and initial and boundary conditions
results in an interesting process behavior in the film region
which can be observed in all figures.

The calculations have been accomplished using Sun Ul-
tra Enterprise 450 UNIX Workstation (Solaris 2.5) whereas
the computation time for the considered examples has not
exceeded 40 s.

6. Conclusions

Up to now, dynamic reactive separation problems have
been solved assuming steady-state descriptions of the inter-
facial and film phenomena, whereas the dynamic changes
are considered in the balance equations only. In this paper,
an unsteady-state multicomponent diffusion–reaction prob-
lem in terms of the film model is dealt with. The diffusion
description is given via the Maxwell–Stefan equations trans-
formed to the generalized Fick’s law. The reaction kinetics
is linearized in order to allow an analytical solution. The re-
sulting matrix-form partial differential equation is completed
by the initial and boundary conditions of a general nature.

Analytical solutions provide the smallest calculation er-
rors thus offering a powerful tool for solving many impor-
tant engineering problems [25]. However, for multicompo-
nent systems, analytically solvable models can be obtained
only very rarely and with further simplifications. Neverthe-
less, a subtle technique employed in this work allows an ex-
act analytical matrix solution of the problem to be obtained

using the superposition of simpler problems and employing
a matrix generalization of the method of variable separation.

The suggested problem formulation and solution represent
a generalization of numerous simpler problems in the field
of mass transfer and reaction coupling. Its matrix formula-
tion allows for the correct consideration of multicomponent
diffusion and reaction interactions. On the other hand, the
formulation of the initial and boundary conditions as some
general vector functions immensely extends the application
area.

The obtained solution can be either employed by itself or
provides suitable preset values for relevant numerical solu-
tions of large systems of equations during the industrial-scale
reactive separation simulations. The results of this work can
be also considered as a step towards completely dynamic
models of reactors and reactive separation units.
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